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Su.nmary -y

The notion of approximately integrable linear statistical models is intréduced to an-
alyze the higher order optimality properties of some common nonparametric estimators.
The approximately integrable models suggest a useful approach to a uni jed treatment of
both regular and irregular non-parametric problems. It is shown that th such models

any rate of improvement ranging from (log n)*/n? to 1/(n(log...log n)*), & > 0, of the :

classical non-parametric procedures can be anticipated. Both an example of a first order
asymptotically optimal estimator with the unusual rate n~!log n and an estimator with

an extremely slow unimprovable rate of convergence 1/(log...log n)® are presented.
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Approximately Integrable Linear Statistical Models
in Non-Parametric Estimation

B. Ya. Levit

1. Introduction

The aim of the present report is to develop the notion of approximately integrable
linear (a.i.l.) statistical models related to the study of the “next” order optimality in non-
parametric estimation. It appears consistent to keep the exposition at present at the least
technical level restricted so far to quadratic losses and scalar valued functionals. At the
same time, the reader will probably notice a number of generalizations readily suggesting

themselves, some of these to be reported elsewhere.

A useful lower bound for a local minimax risk in estimating such functionals will be
derived (Section 3). Based on this bound it will be demonstrated that with a.i.l. models any
rate of the “next” order improvement of the (first order) asymptotically optimal estimators
may be anticipated ranging from (log n)*/n? to 1/(log...log n)*n,fork =1,2,...,a > 0.

k

Clearly when this is the case the next order improvement may well challenge the
asymptotic optimality of a given first order efficient estimator. At the same time, with the
a.i.l. models one easily discloses nonparametric problems with first order efficient estimators

converging at rates (e.g. n™!log n) different from the common one (1/n).

Another highlighting point is that the a.i.l. models appear to be rather well tailored to
incorporate both regular (as e.g. cdf estimation) and irregular problems (such as estimation
of the derivatives of cdf). Both types can be treated then, along similar lines using the
above mentioned lower bound. With this approach one discovers a close relation between
the optimal rates of improving the standard estimators of the regular functionals and the

optimal estimability rates for the irregular ones.

We introduce a.i.l. models after presenting some prerequisites.

2. Some Preliminaries and Definitions

Let X1,...,X, be an independent sample in a measurable space (X, A) with a com-
mon distribution F ranging in a given subset F of distributions defined on A. It will prove
convenient to supply F with a relevant topology 7. While different competing measures of
closeness on F are readily available, at this stage it appears difficult to argue conclusively

in favor of anv particular one. Still mainly for its clear statistical meaning we will make
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use in the sequel of the topology 7 = T; on F induced by the distance in variation just to
fix a workable and relatively simple one.

Given a real valued function ¥(F'), F € F, we address below optimal rates of estima-
bility and, provided first order efficient estimators exist, higher order optimality properties
in estimating the unknown value ¥(F') based on given observations.

Let ¥, = ¥,(X1,...,Xa) be an arbitrary estimator of ¥(F) and
Ro(¥n,F) = Ep(¥, — ¥(F))%. (2.1)

While there are plenty of loss functions one can choose from, the particular one in (2.1)
serves well the purposes of this presentation. By an estimator ¥, we mean below any

sequence of estimators ¥,, n > 1.

Let us recall next some asymptotic properties a reasonable estimator ¥, of ¥(F) is
expected to share. The underlying common idea behind the different definitions to be used
below is that a “nice” estimator should exhibit reasonable global consistency properties
while being locally unimprovable. To this point we present the following definitions keeping
in mind their reference to a given underlying set of distributions F.

Definition 1. The function ¥(F) is called

a) p(n)-rate estimable if there exists an estimator ¥, such that, locally uniformly in F,
Ro(¥n,F)=0O(p(n)),  (n — oo);

b) exactly p(n)-rate estimable if it is p(n)-rate estimable and moreover for any sequence
p'(n), p'(n)/p(n) — 0, and any non-empty vicinity V € T no estimator ¥, satisfies the
relation

Rn(\I’naF) = O(p'(n))
uniformly on V.

Assume that ¥(F) is exactly p(n)-rate estimable. The next definition refers to the
first order asymptotically optimal properties in estimating ¥(F).

Deflnition 2. An estimator V¥, is called locally asymptotically unimprovable or first
order asymptotically optimal if for any non-empty vicinity V and a positive number R
there exists ng such tkat for n > np no estimator ¥/ eatisfies the inequality

Ra(¥',F) < Ro(¥,,F)—Rp(n), FeV.
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Let now ¥, be a first order asymptotically optimal estimator. The following definition
refers to the “next” order properties of ¥,,.

Definition 3. The estimator ¥,, is called

a) pi(n)-rate improvable if there exists a non-empty vicinity V, positive number R and an
estimator ¥/, such that locally uniformly in F

Ra(¥p, F) £ Ra(¥a, F) = Rpr(n)U(F € V) + o(p1(n))-

Otherwise ¥, is called p;(n)-rate unimprovable on F (here p1(n)/p(n) = o(1), n = o0);
b) exactly p1(n)-rate improvable if it is p;(n)-rate improvable and moreover for any non-
empty vicinity V' and any sequence pi(n), pj(n)/p1(n) = oo, n — oo, ¥, is pj(n)-rate
unimprovable on V.

Let 3: z — R! be a measurable function. It appears the linear functionals of the form

W(F) = / ¥(z)dF(z) (2.2)

provide useful appro~imations to a variety of meaningful nonparametric functionals both

regular and irregular.
Let
. 1 @
by =~ ; H(X:).

Conditions for asymptotic optimality of the estimator ¥, were found in Levit (1974); see
also Koshevnik and Levit (1976). We summarize below the corresponding result for the
sake of reference.

Theorem 2.1. Assume the set F satisfies the following conditions:

1) [ ¥?*(z)dF is locally bounded in F,

2) for any F € F there exist a sequence of functions i(z) and positive numbers ai
such that F contains, for any k, the exponential family of distributions G. defined by the

relation
(fic;f (z) = exp{cdrg(z) - b(c)}, |c| < ag, (23)

and

lim [(4a(z) - w(a)dF =0, (2.4
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Then ¥, is first order asymptotically optimal estimator of Y(F).

Conditions (2.2)—(2.4) represent corresponding linearity and integrability properties
of the functional ¥(F'); the full meaning of the later term to be explained in subsequent
publications. We elaborate further on approximately linear integrable models in the next

section.

3. Approximately Integrable Linear Models:
Lower Bounds

Let ¥(F) be a given functional to be estimated from the sample X;,..., X, and
Yn(X), ¢ € X — a sequence of real valued measurable functions. Denote

Bn,F = EF”/’"(X) - \I’(F)
o2 p = Varppn(X) (3.0)
where X is distributed according to F.

In the particular case of the functional (2.2) with
0% = Varpy(X) < 00

denote also
ApFp= a% - af,,p (3.0

Approximately integrable linear (a.i.l.) models to be considered below can be de-
scribed by the following two assumptions.
Assumption AL (approximate linearity). Locally uniformly in F

n“lof p+Bip=0(1), n-— oo

Assumption Al (approximate integrability). For every F' € F and any of its vicinities
V there exists positive a, such that the exponential family of distributions G, . defined
by the relations

dGn,c = g(z,c)dF = exp{chn(z) ~ ba(c)}dF, (3.1)
ba(c) = log/exp{c:/),.(a:)}dF (3.1

exists and belongs to V for |c| < an.




Due to the assumption AL,

\i’n = '1" Z"/’n(xt)

3

is a consistent estimator of W(F') while 0,21, 7 and By r provide an upper bound in estimating
Y(F) as
Ro(¥n,F)=n""02 p+ B2 ¢ (3.1")

It is to be shown next that they provide a useful lower bound in estimating ¥(F') as well.

Whenever the family (3.1) is involved we will denote

Bn‘F(C) = BnyGn,c’ U?I,F(C) = Ulz‘l,Gn'c? An,F(C) = An;Gn,c (3'2)

etc.

Let ¢(a) denote the class of continuously differentiable probability densities A vanish-
ing outside the interval (—a,a) with

1y = [ QX A:\((Cc)))

dc < oo.

—-—a

Theorem 3.1. Assume that the family of distributions defined by (3.1) satisfies assump-
tion AI w.r.t. a vicinity V of a given Fy € F and Aq(-) € ¢(an). Then the following

inequalities obtain

. ; T (2@ :
lg,lf ;\ér‘),(R,,(\II,,,F) — Rp(¥n, F)) > — / (n/\n( 3~ B, po(c)) An(c)de (3.3)

-1/ _ -2(/\ (c))? c
ipf 3up (Ra(¥n,F) = n7'0% ) 2 / (2n7 X (0B () ~ n A e (3.9

and in the case of the functional (2.2) with locally bounded 0% = Vargy(X)
inf sup(Rp(¥n, F)—n"10%) > / (=n"'Ap Fy(c)+
¥n Fev

£ 207X () B pa(c) — n-2 (("')))2 e, (3.5)




In applications below we will choose 1, appearing in Theorem 3.1 so as to bring
the upper bound (3.1") and lower bounds (3.3)-(3.5) as close as possible in their rates of
decrcase. It seems tempting to optimize these lower bounds by a particular choice of A,(-);

a task which however we won’t pursue here.

Proof. Dencte 8(c) = ¥(Gn,), 0%(c) = 0} g (c), B(c) = Bn,r(c), b(c) = bn(c) and
g™z ¢) = .£I1 g(zi,¢) = exp{n(c¥n - b(c))}. By (3.1')

6(c) = b'(c) — B(c). (3.6)

Hence

%log d™(z,c) = n(¥n ¥ (c)) = n(¥, - 6(c) — B(c)). (3.7)

Consider the Bayes estimator ¥ of ¥(F) w.r.t. risk function R,(¥,, F') and the prior
distribution induced on the subfamily G, . € V, [¢| < an, by the Ay(c):

an

[ 9™ (2, ¢)8(c)An(c)de

¥y === rm =J’n+l‘n(d;n)
J 9™ (z,e)An(c)de
where .
J 9™z, c)(8(c) — Ya)An(c)de
:u"(‘Il") = — Gy
I 9™(z, e)An(c)de
One obtains
Ra(¥a,2) = / Rn(¥x,Gn )Mc)de (3.8)

= [ [+ n(¥0) - B0 LA M = T + T + I,

—~Ggn Ar




where
an

= c)de U, — 60(c))2dG™) (z
L= [ e [ (8 - b0y aGEa)

—an

- / (n"20%(c) + B¥(c))Mn(c)de,

R T

I = / 12()dF ™ (g) / 9™ (z, ) An(c)de
xn

—an

(T g™ (2 c)B(e) - Fn)An(c)de)?
= = aF(z),
- T 9™z, c)An(c)de

—Gp

I =2 /X in(E)dF™ () / (Fn = 8())g™ (2, €)An(c)de

= =2I,.

Thus
Ro(¥x,\) =1, — I.

One then obtains further that

0< / [ (snt) - (55 - B0)) ) a6

= 12 + Iy + Is,
where .
F [ A (o) 3 2
= 0 An(c)d
I / (nA,. B B(c)) (c)de
.
and

Iy = —2 /x in(Fn)dF™ (2) / g™ (z, &) (n" No(e) - Ble)Mn(e))de

) 7 (") (g e
= -2 /X ) pn(80)dF™ () / (—n-ldg—d-(c-—’—) — ¢\™(z,¢)B(c))An(c)de

= -2 /X tin(a) / g™ (2, €)(8(c) — ¥n)An(c)dedF™(z)

= -2I

(3.9)

(3.10)

(3.11)

(3.12)




where integration by parts and relation (3.7) were used to obtain correspondingly the
second and third equalities. Thus I > I and (3.8)-(3.12) result in

Rn(‘i’,\,/\) >5L -1, =

7(R,.(<p,.,c,,.c) - (25~ 5 Waterte =

=2 (An (C))2

() N

/ (na?(c)An(c) + (2n~ 12 (c)B(c) —

wherefrom the theorem follows.

Our next goal is two-fold. First it will be shown by the use of Theorem 3.1 that any
rate of the higher order improvement of first order asymptotically optimal estimators may
be anticipated ranging from (log n)*n~? to (log log...log n)™*n~!, k =1,2,...,a >

Nt e’

0, for approximately integrable models. Second a :lose resemblance will be exhibited
between next order optimal rates of improvement for such estimators and optimal rates of
estimability of some non-regular functionals, the common ground for a combined treatment
of these rather different problems being furnished by the notion of a.i.l. models.

4. A.i.l. Models: First Applications

Without loss of generality we can restrict ourselves, within the scope of the paper, to

estimating the simplest function

Y(F) = /R 2dF.

As is well known the tail behavior of the distributions F' € F is of primary importance in
assessing the asymptotic properties of the sample mean

We will proceed examining the crucial role of this tail behavior in assessing the best rates
of improving upon Xn. In particular the quantity

m(a) /l > z*dF

will matter as may be inferred from the next lemma.
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Lemma 4.1. Assume that for a given space of distributions (F,7T) there exist a) a

continuous decreasing to zero function £(v), v > 0, a positive v and for any F € F such
Nn(F), 72(F), 13(F), 0 < 1(F) < 72(F) < 7, 73(-) locally bounded in F, that

Nn(FEE) < QW) < n(F)Ew),  v>n(F), (4.1)

and b) for any F' € F and any its vicinity V C F, a § = §(F,V) > 0 exists, such that the
family of distributions G, of the form

dG.

-1

belongs to V for all sufficiently large v, where

2 = 2 1(151<0)(3).

Define v = v, by the relation
L2

€)= o (42) |
Let v, be any sequence such that for n — oo |
=14 o(1), §m) _ 14 o1). (4.3)
&(va)
Denote tn(z) = z(*») and let
R 1 <
—_ - / . ]
¥p = > ) ba(X0). (4.3)

=1

Then 1) X, is exactly (%>)?-rate improvable and 2) locally uniformly in F,

71(F)
yo —— (=

Vp

Ra(¥n,F)< 22 Z)(1+o(1)),n — co.

Proof. Let
€7 (v,0) = €6 (v).

With notations (3.0), (3.0’) one obtains
[Ba,r| < () €2 w0, (44)

10




An =0} -0l p=E2() = (29(F) = Bup)Bar
(2)(Vn) 14 0(1)), (n— o) (4.5)

locally uniformly in F, and
€8 (Vh,0) < 2760, (4.6)

Now applying Theorem 3.1 with ¢, (z) = 2(*) | a, = s(vi)™t, An(e) = A(anc) where

A(-) € o(1), A,y = f [N (e)lde, Ay = fgr(-(%—)—dc A2 < A, < oo, one obtains from (3.5),

using (4.2)-(4.6),

1nf sup(Rp(¥,, F) —n"lo%) >

¥n Fev
=7t sup €0, 0)(1 467+ o(1) - has (22 >
c|<an "
> —n P (FIEwh)(1 + 87 M)+ of1)) = da62(2)7 =
26 F n
_ (e ;27( D145 )+ A25'2) (%)2(1 +0(1)), (n— o),

proving assertion 1).

Applying once again (4.2)—(4.6) one obtains further locally uniformly in F:

Rn(‘il,.,F)—n anF+B
<n7l ap+( n*lf“*’(vn)+(v;>—2(eﬁf’<u;)>2)<l+o<1)>
<n7loh - ‘”( Vi) (1 +o(1))

”‘(F 1 w1+ of1)

= nlh - —”jf 274 o),

< n"la2

proving ascertion 2).

We present next a few exampies in which Lemma 4.1 can be effectively used to define

rates of improvement of the sample mean X, =n"! 3" Xi. Notice that in examples 1-3
i=1

X, is a first order asymptotically optimal estimator of ¥(F) = ErX due to Theorem 2.1.
Below F(z) stands for 1 — F(z) + F(~z), (z > 0).
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Example 1. For given a,f,v and a real u consider the class F of distribution functions
F(z), (zx € R) such that for some 71(F), 72(F), 0 < 71(F) < 72(F) < v and locally
bounded function y3(F’)

y1(F) < (2% #*°) 1F(z) < 72(F),  z > 73(F).

Let

, —
Vp =

) log ¢
10g 2yn + ﬁlog log 2yn — 8 /3)2'-“
a a

@] -

and ¥, be defined as in (4.3').

- 1 2
Proposition 4.1 a) X, is exactly mﬂ—;L—rate improvable on F and b) locally uniformly

in FeF R
2(F)  x(F)(log n)=
n 4 n?

Ra(¥,,F) < 2 (1+0(1)), n— oo.

Notice that the smaller is a, i.e. the heavier are the tails of F, the larger is the

improvement rate of the sample mean.

Proof. Using the relations

D) = / 22dF(z) = 2 / z F(z)dz + v*F(v) (4.7)
and -
/:c“c_ﬂ‘adx = a—lﬂ-u““""e'ﬂva(l +0o(1)), (v — o)

[ 4

one readily verifies the relation (4.1) with {(v) = -&%V“”‘“e"ﬂ" *. Clearly the assumption
b) of Lemma 4.1 holds with some §, 0 < § < -;-log ;’-2—?'?7 Thus the proposition follows

immediately from Lemma 4.1.

Example 2. Assume that for some a > 2,y >0
F = {F|m(F) < F(z)z* < m(F), z>(F)}

where 0 < 71 (F) < 72(F) < v, y3(F) is locally bounded.

12




Let

and ¥, be defined as above in (4.3').

Proposition 4.2 a) X, is exactly n= % rate improvable on F and b) locally uniformly

in F

- o%(F) a 2 7(F)
Bn(¥n, F) < n —(0—2)QQZL—G2-27Q—¢::3

n~ (14 0(1)), (n — o0).

Notice that again the smaller is a the higher is the improvement rate of the sample

mean.

Proof. By (4.7) the relation (4.1) holds with §(v) = =2-1%~. Thus the Proposition 4.2 is

implied again by Lemma 4.1 along the argument already used in proving Proposition 4.1.

Denote
log,z =log log...logz
e —  ————

& times

Example 3. Assume that for somea > 1,k =1,2,...

k-1
F = {Fim(F) < [] log; z(logi 2)*2*F(z) < v2(F), = > 1s(F)}

=1
for some 0 < 41(F) < 72(F) < oo and a locally bounded v3(F).

The example exhibits the following peculiar properties. First the attainable rate of
improvement of X, is very high, namely ((log, n)*~1n)~!, which is practically compa-
rable to the order n~! of the leading term of the risk R,,(X,,,F ) for most sample sizes.
This apparently suggests that in a still larger class of nonparametric problems the first
order asymptotic optimality of a given estimator cannot be taken as a guard against its

improvability in some reasonable applications by appealing to higher order properties.

Second in distinction to the former examples 1, 2 the improving estimator we present
below is even second order unimprovable, or second order admissible. This sort of conclu-
sion, which can be drawn, with the help of Theorem 3.1, whenever the bias and variance
terms don’t match each other, doesn’t seem to be excessive, whence the higher order terms

of the risk expansion fall close to the leading one.
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Let

(2 )”2, ifk>1,

log n
n n 1/2 .
(m:) , ifk#1.
Proposition 4.3 a) X, is exactly ((logy n)*~'n)~-rate improvable on F; b) locally
uniformly in F
Ra(¥n, F) € n7'0% — 27 (F)((logs vR)* 'n) ' (1+ o(1)), (n — o)

and c) ¥, is second order admissible, or ((log; n)*~!n)~!-rate unimprovable on F.

Proof. It follows from (4.7) that locally uniformly in F

271 (F)(logs ¥)* ~(1 + 0(1)) < €2 (v) < 272(F)(logx v)' (1 + o(1)), (v — 0). (4.8)

Using relations

(=<}

|Barl < €D(v) = / 2dF(z) = / F(z)ds + vF(v) (4.9)

one obtains similarly

{ 2pa(F)wlogw) (1 +0(1)),  k>1,
IBn,Fl S
272(F)(v(logv)*)'(1+o(1)), k=1
Thus (3.1"), (4.5) result in the following:
Ro(¥n, F) =n7lo} — 070 (1)1 + (1)) + Bl
< n7lof — 2m(F)((log, vn)*"'n) T} (1 + o(1)),

proving the second assertion of the proposition.

(4.10)

To prove the first and last statements notice that for any non-void vicinity V of
F there exists § > 0 such that the family G, . defined by (3.1) with ¢,(z) = zt¥),
le] < an = &(v,)"?, belongs to V. Now using the inequality (3.3) with A,(c) as in
Lemma 4.1 one obtains from (4.9)

inf sup (Ra(¥n, F) = Ra(¥n, F)) >
¥a Fev

/\1 A2
> — B? - s B -
- |cs|l<1£n n'F(C) Gnnt |c|\<q¢)u 1B, () (aan)? (4.11)

_ {O(nlog n)-1, k>1 = o(n(log, n)a-—l)-l’n — oo,

~ 1 O(n(log n)*)"1, k=1

14




Notice that the logarithmic term incorporated in v;, is essential only in deriving the
lower bound (4.11), while a simpler estimator ¥,, with ¥,(z) = z{V™ satisfies both the
assertions b), ¢) of Proposition 4.3.

So far we have analyzed higher order asymptotic properties X» under progressively
heavier tail behavior of the underlying distribution F € F. It is all but natural to inquire
further what happens with this estimator while F' ranges over the class

F={F: n(F) < 2°F(z) S m(F), z>n(F)}
where 0 < % (F) € 72(F) < oo and v3(F) is locally bounded.

Notice that X, is no longer first order asymptotically optimal or even risk finite in
that case. Still Theorem 3.1 allows us to arrive at a meaningful result and moreover is
exhibiting a new kind of phenomena. We shall see that there still exists an asymptotically
optimal estimator ¥,, of the mean ErX which however is in that case only log (n)/n-rate

consistent and moreover the normalized risk losﬁR,.(‘i’,., F) does not need to converge.

Define

1 4

1@w) = / 22dF(z)

and let

Proposition 4.4. a) The functional ¥(F) = ErX is exactly log (n)/n-rate estimable on

F;b)
2v2(F)log n
n

Rn(‘i’m F)< (1+0(1)), n— oo,

locally uniform in F and c) ¥, is first order asymptotically optimal and exactly n=!-rate
improvable on F.

Proof. The inequality (4.9) when applied to F € F gives locally uniformly in F
2v,(F
1Barl < 225 (1 4 oa)).

On the other hand

ng)(u) = /zzdF = /2::?(:)(13: —V2F(v) < 272(F)log v(1 + o(1)), v — oo.
° 0

15




Thus )
Ra(¥n, F) =n"" Var X 1 B2 . <2 'nP(0) + B2 ; <

<Dl 1y oy,

Now the same argument leading to (4.11) applies with a, = év;! and

1 1
sup B3 p(c) + sup |Byn r(c)l + ——5 = O(n™")
Jej<an F AnN |c|<a, (Van)?

implying that ¥, is at most n~!-rate improvable. That it is indeed that rate improvable

n
can be easily demonstrated by considering the estimator n™! 3 X 56"") with § sufficiently

i=1
small.

Remark 4.1. The way we have defined the class F is essential for the crucial assumption
Al of Theorem 3.1 to be fulfilled while the very definition of F allows for the oscillations

in the normed risk behavior of \il,..

Proceeding further with heavy tailed distributions F' one is led to considering the
nonregular linear functionals still covered by Theorem 3.1 which will allow optimal rates

conclusions to be derived for such functionals.

Example 5. Let, for some a,v,1 < a < 2,0 < v < o0,
F ={F|n(F) <z7°F(z) < 7(F), = > 73(F)}

where 0 < 11(F) < 72(F) < 7, 73(F') being locally bounded.

Define
Yn(z) = min(|z|,v) sign =

2

(4.12)
an’F = Va.rF‘I’n(X)

with v = v, — 00 to be defined below.

In asserting lower bounds in this and the next examples we use the following lemma.

Lemma 4.2. Let V C F be a vicinity of a given F' € F with ¥(-) bounded on V and the
family Gp c be defined by (3.1), (4.12). Assume that G, ¢ € V, |c| < év;!, for some § > 0.

1 !
Let Ap(c) = M6 vuc), where A € ¢(1) is a symmetric density with A\, = | '\A i “de < oo.
-1
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Then
inf sup (Rn(¥n, F) — 0% F) >

Vi FeVv
% [ / Aavy
Vn = cé —~cbyy! 2Vn
> -2 [Pade [(e - W (0del1 4 1) ~ 532, m oo
Vn 0

Proof. For a fixed § and |c| < év;;! one obtains

e (©) = Epet¥»(X) = Ep(1 + cpa(X) + o{ctn(X))?) =
=14+0(v;')=1+0(1), n— oo

Next with By r(c) = Eg, .(¥n(X) — X) integration by parts results in the following

relations

oo

B, r(c) = /:L‘d(l — Gno(2) = Gn,o(—2)) + (1 = Gn o(v) — Gn (1))

14
o0

= — /(1 — Gn,c(z) — Gn,c("x))d:z

14

= et / (e*(1 = F(z)) — e~*F(~2))dz

= —(1+4 o(1)) /(e"’(l — F(z)) ~ e Y F(—z))dz. (4.13)
Thus -
Ba.p(c) = B p(—c) = —(1 + o(1))(c — &) / Flz)dz
so that

sv-?t

[ X@Bar(ee= ] A(¢)(Br,p(€) = Bu,p(—C))de =
le|<bp—1 5

=75 / Fo)ds / (8 — e~ )N (c)de(1 + o(1)), n = 00, ¥ = 0o.

Hence using the inequality (3.4) of Theorem 3.1 with A, as specified gives the result in

question.
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Consider next an estimator of ¥(F') = ErX of the form

$o=n"1) ¥a(Xi) (4.13")

=1

where ¥, is defined through (4.12) with

Vp = pn‘}-, p>0.

Proposition 4.5. a) ¥(F) is exactly 2
in F

2 rate estimable on F and b) locally uniformly

R,,(\il,,,p) < ( gz(i) 2-a 4 (‘7’2( 1)) p2(1-a)) (1+0(1)) n — oo.

Proof. Let V be a non-empty vicinity in F, F € V. Using the family G, . as in Lemma 4.2
it is easy to check that G, . € V, for |c| < §v;?, and sufficiently small § > 0. Thus by

Lemma 4.2

inf sup Rn(¥n, F) > ?Ji@—”'z'—i,\ 3(1+0o(1)) - ’\2” =
¥n FEV b(a—1)n
F)A A
(@)
where
1
- /,\'(c)(e“ — e %)dc (4.14)

0

can be made positive by a proper choice of A(-) e.g. by making A'(c) negative for 0 < ¢ < 1.
Choose further p small enough to make the bound positive ensuring the lower rate bound
as stated.

To prove the last statement one obtains

1 4

olp < Erdi(X) = [P +*F() =
0

/ zF(z)dz < 2”(F 292F) 2-ay 4 1)) (4.15)
0
and along the lines of (4.13)
|Ba,F|l = |EFya(X) — ¥(F)| < / F(z)dz < %?(_—I?VI-‘*(l + o(1)). (4.16)
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Thus with v = v, = pnf, p>0
Rn(\i’na F) = n_lai,F + B?:,F <
2—a F 2 —a
< (272(F)P + (71( )) p2(l--o)) nw»_l(1+o(1))

2—«a a-—1

locally uniformly in F'.

A slightly different upper bound would result for the estimator ¥,; = n~! Zn: X f"").

=1

Ro(¥n1, F) < ((2—2"2_(—? - 71(F)) L (:,_,_(1;’_)) pzu—a)) y
x n* T (1 + o(1)).

Example 6. Let for some integer k > 1 and givena >1,v> 0
k-1 _
F = {Fm(F) < =(]] log; z)(logs 2)*F(z) < 12(F), = > 13(F)}

=1

with some 0 < 71(F) < 12(F) < v, 73(F’) being locally bounded.

Proposition 4.6. The functional ¥(F) = ErX is exactly (log; n)*(*~)-rate estimable
on F and b) the estimator (4.13’), (4.12) with v = v, = n satisfies the relation

Rn(¥n,F) < 73 (F)(logy n)* (1 + o(1))

locally uniformly in F.

Proof. Applying Lemma 4.2 in the same manner as in Proposition 4.5 with

v = v, = pn(log, n)!

one obtains for an arbitrary vicinity V€ F, F€ V,

inf sup R,.(\il,.,p) >
Yo Fev

( 2n(Fe(1+0(1)) Azp? )
§(log, pn)*—1(log, n)2-1  6%(log, n)?(e-1)
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with a positive 6 and A; > 0. For a sufficiently small p this gives a lower bound

inf sup Ra(¥n,r) > c(V)(log, n)2~®
¥n Fev

with a positive constant ¢(V).

Now for the estimator ¥, (4.15), (4.16) give with v = n:

14 1 4 k—1
oi,p < Q/mf(m)d:c < 2v,(F) (H log; z) " (logi z)~*dz(1 + o(1))
0 v7 =1

, (v — 00)

< {272(F)(log v)T'w(l+0(1), k>1
2v2(F)(log v)~*v(1+0(1)), k=1

and
o0

|Bn,F| < /F’_(:c)da: <y (F)(logi v)' "*(1 + o(1)), v — oo,

[4

wherefrom the statement b) follows.

The example just considered appears to be instructive in several aspects. First it
exhibits an estimator with an extremely slow, though best attainable, speed of convergence.
Next it differs from the previous ones (as well as many other estimation problems) in that
the risk of the best convergence rate estimator is mainly contributed by the bias rather
than the variance term. Notice that just as in the two previous examples there exists an
estimator with quadratic risk tending to zero at the best rate though the sample mean

clearly has no even finite second order moments.

The examples 1-6 feature the sort of results one can arrive at with the introduced
notion of a.i.l. modes. Further applications to a wider class of functionals will be presented

elsewhere.
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